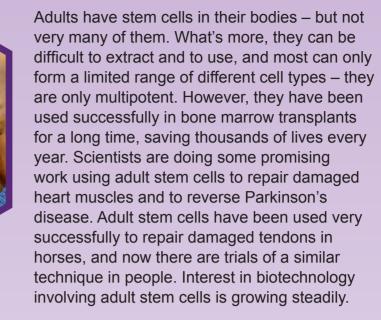

stem cells new horizons in medicine

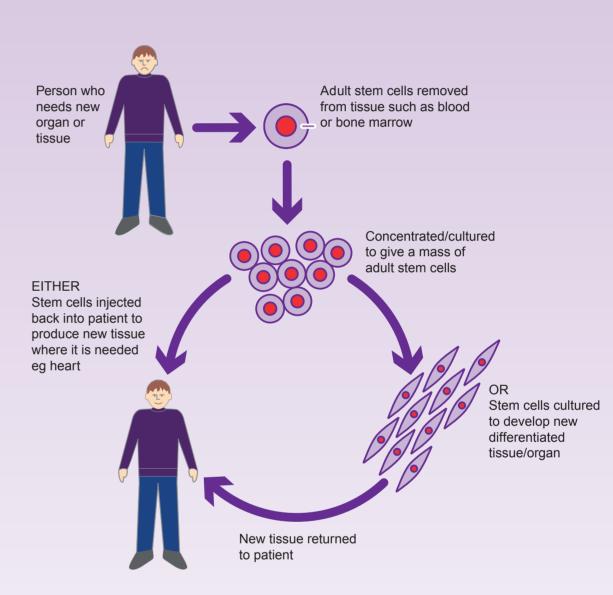
In the late 1990s, American scientists developed a method of culturing embryonic stem cells – cells with the potential to develop into any of the specialised tissues the body needs. This raised hopes of a major medical breakthrough – the ability to replace diseased or worn out body parts with new, healthy tissue. So far progress has been relatively slow, but although there are many technical and ethical issues to be resolved, these new techniques still have the potential to revolutionise medicine.

Embryonic stem cells

The early human embryo contains many stem cells which can be harvested and cultured in the laboratory to produce huge numbers of undifferentiated cells. By changing the culture conditions, scientists have persuaded some of the stem cells to differentiate into new tissues including cartilage, bone and nerves. They hope to produce whole organs for transplantation in the future. In small trials to assess the safety of a procedure, embryonic stem cells also helped restore sight in patients with age related macular degeneration. More trials and different treatments are in the pipeline.

organs




Induced pluripotent stem cells (iPSCs)

In 2006, Japanese scientists made an amazing breakthrough. They persuaded differentiated adult mouse cells to become pluripotent again and act like embryonic stem cells. Since then, human iPSCs have also been developed. The potential for these cells in regenerative medicine, making new tissues and organs, is enormous. Because iPSCs may be produced from cells of the individual who needs them, they can overcome any problems of rejection. They avoid the ethical issues of using cells harvested from embryos. They can be used to model the molecular basis of different diseases in individual cells. Scientists can also use iPSCs as exciting new tools in the process of aiscovering new arugs

Adult stem cells

Therapeutic stem cell cloning

In this technique, DNA is taken from the cells potential is enormous.

attacks and spinal injuries. The technique still needs a lot of development, but its medical